[开源] 基于transformer的时间序列预测模型python代码

news/2024/7/10 19:48:35 标签: 开源, transformer, python

分享一下基于transformer的时间序列预测模型python代码,给大家,记得点赞哦

python">#!/usr/bin/env python
# coding: 帅帅的笔者

import torch
import torch.nn as nn
import numpy as np
import pandas as pd
import time
import math
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler

# Set random seeds for reproducibility
torch.manual_seed(0)
np.random.seed(0)

# Hyperparameters
input_window = 10
output_window = 1
batch_size = 250
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
epochs = 100
lr = 0.00005

# Load data
df = pd.read_csv("data1.csv", parse_dates=["value"], index_col=[0], encoding='gbk')
data = np.array(df['value']).reshape(-1, 1)

# Normalize data
scaler = MinMaxScaler(feature_range=(-1, 1))
data_normalized = scaler.fit_transform(data)

# Split the data into train and validation sets
train_ratio = 0.828
train_size = int(len(data) * train_ratio)
val_size = len(data) - train_size
train_data_normalized = data_normalized[:train_size]
val_data_normalized = data_normalized[train_size:]

# Define the Transformer model
class PositionalEncoding(nn.Module):
    def __init__(self, d_model, max_len=5000):
        super(PositionalEncoding, self).__init__()
        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0).transpose(0, 1)
        self.register_buffer('pe', pe)

    def forward(self, x):
        return x + self.pe[:x.size(0), :]

class TransAm(nn.Module):
    def __init__(self, feature_size=250, num_layers=1, dropout=0.1):
        super(TransAm, self).__init__()
        self.model_type = 'Transformer'
        self.src_mask = None
        self.pos_encoder = PositionalEncoding(feature_size)
        self.encoder_layer = nn.TransformerEncoderLayer(d_model=feature_size, nhead=10, dropout=dropout)
        self.transformer_encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=num_layers)
        self.decoder = nn.Linear(feature_size, 1)
        self.init_weights()

    def init_weights(self):
        initrange = 0.1
        self.decoder.bias.data.zero_()
        self.decoder.weight.data.uniform_(-initrange, initrange)

    def forward(self, src):
        if self.src_mask is None or self.src_mask.size(0) != len(src):
            device = src.device
            mask = self._generate_square_subsequent_mask(len(src)).to(device)
            self.src_mask = mask

        src = self.pos_encoder(src)
        output = self.transformer_encoder(src, self.src_mask)
        output = self.decoder(output)
        return output

    def _generate_square_subsequent_mask(self, sz):
        mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
        mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
        return mask



# Create the dataset for the model
def create_inout_sequences(data, input_window, output_window):
    inout_seq = []
    length = len(data)
    for i in range(length - input_window - output_window):
        train_seq = data[i:i+input_window]
        train_label = data[i+input_window:i+input_window+output_window]
        inout_seq.append((train_seq, train_label))
    return inout_seq

train_data = create_inout_sequences(train_data_normalized, input_window, output_window)
val_data = create_inout_sequences(val_data_normalized, input_window, output_window)

# Train the model
model = TransAm().to(device)
criterion = nn.MSELoss()
optimizer = torch.optim.AdamW(model.parameters(), lr=lr)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.95)

def train(train_data):
    model.train()
    total_loss = 0.
    for i in range(0, len(train_data) - 1, batch_size):
        data, targets = torch.stack([torch.tensor(item[0], dtype=torch.float32) for item in train_data[i:i+batch_size]]).to(device), torch.stack([torch.tensor(item[1], dtype=torch.float32) for item in train_data[i:i+batch_size]]).to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = criterion(output, targets)
        loss.backward()
        torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
        optimizer.step()
        total_loss += loss.item()
    return total_loss / len(train_data)

def validate(val_data):
    model.eval()
    total_loss = 0.
    with torch.no_grad():
        for i in range(0, len(val_data) - 1, batch_size):
            data, targets = torch.stack([torch.tensor(item[0], dtype=torch.float32) for item in val_data[i:i+batch_size]]).to(device), torch.stack([torch.tensor(item[1], dtype=torch.float32) for item in val_data[i:i+batch_size]]).to(device)
            output = model(data)
            loss = criterion(output, targets)
            total_loss += loss.item()
    return total_loss / len(val_data)




best_val_loss = float("inf")
best_model = None

for epoch in range(1, epochs + 1):
    epoch_start_time = time.time()
    train_loss = train(train_data)
    val_loss = validate(val_data)
    scheduler.step()

    if val_loss < best_val_loss:
        best_val_loss = val_loss
        best_model = model

# Predict and denormalize the data
def predict(model, dataset):
    model.eval()
    predictions = []
    actuals = []
    with torch.no_grad():
        for i in range(len(dataset)):
            data, target = dataset[i]
            data = torch.tensor(data, dtype=torch.float32).to(device)
            output = model(data.unsqueeze(0))
            prediction = output.squeeze().cpu().numpy()
            predictions.append(prediction)
            actuals.append(target)
    return np.array(predictions), np.array(actuals)

predictions, actuals = predict(best_model, val_data)
print("Predictions shape:", predictions.shape)
print("Actuals shape:", actuals.shape)

predictions_denorm = scaler.inverse_transform(predictions)
actuals_denorm = scaler.inverse_transform(actuals.flatten().reshape(-1, 1))

# Plot the results
plt.plot(predictions_denorm, label='Predictions')
plt.plot(actuals_denorm, label='Actuals')
plt.legend(['Predictions', 'Actuals'])
plt.xlabel('Timestep')
plt.ylabel('High')
plt.legend()
plt.show()






更多时间序列预测代码:时间序列预测算法全集合--深度学习


http://www.niftyadmin.cn/n/5479019.html

相关文章

《前端面试题》- JS基础 - call()、apply()、bind() 的区别

call 、bind 、 apply 这三个函数的功能都是改变this的指向问题&#xff0c;但是也存在一定的区别。 call 的参数是直接放进去的&#xff0c;第二第三第 n 个参数全都用逗号分隔,apply 的所有参数都必须放在一个数组里面传进去bind 除了返回是函数以外&#xff0c;它 的参数和…

语音识别(录音与语音播报)

语音识别&#xff08;录音与语音播报&#xff09; 简介 语音识别人工智能技术的应用领域非常广泛&#xff0c;常见的应用系统有&#xff1a;语音输入系统&#xff0c;相对于键盘输入方法&#xff0c;它更符合人的日常习惯&#xff0c;也更自然、更高效&#xff1b;语音控制系…

OceanBase V4.X中常用的SQL(一)

整理了一些在OceanBase使用过程中常用的SQL语句&#xff0c;这些语句均适用于4.x版本&#xff0c;并将持续进行更新。后续还将分享一些V4.x版本常用的操作指南&#xff0c;以便更好地帮助大家使用OceanBase数据库。 集群信息 版本查看 show variables like version_comment; …

Java 8 中 Stream 流的基础概念及特性介绍

1. 【Java 8 中 Stream 流的基础概念及特性介绍】 第一章&#xff1a;什么是Stream流 1.1 为什么引入Stream流 传统的集合操作需要通过循环或迭代器进行&#xff0c;代码冗长且不易维护Stream流提供了一种更简洁、更易读的方式处理集合数据引入Stream流可以实现更多的函数式…

【HTML】简单制作一个3D动态粒子效果的时空隧道

目录 前言 开始 HTML部分 CSS部分 效果图 总结 前言 无需多言&#xff0c;本文将详细介绍一段HTML&#xff0c;具体内容如下&#xff1a; 开始 首先新建文件夹&#xff0c;创建两个文本文档&#xff0c;其中HTML的文件名改为[index.html]&#xff0c;CSS的文件名改为[Bab…

家庭网络防御系统搭建-将NDR系统的zeek日志集成到securit yonion

在前面的文章中安装了zeek,这里&#xff0c;安装了securityonion&#xff0c;这里&#xff0c;本文讲述如何将zeek生成的日志发送到siem security onion之中。 所有日志集成的步骤分为如下几步&#xff1a; 日志收集配置日志发送接收日志解析配置日志展示配置 ZEEK日志收集配…

GitHub 仓库 (repository) Watch - Star - Fork - Follow

GitHub 仓库 [repository] Watch - Star - Fork - Follow References 眼睛图标旁边写着 Watch 字样。点击这个按钮就可以 Watch 该仓库&#xff0c;今后该仓库的更新信息会显示在用户的公开活动中。Star 旁边的数字表示给这个仓库添加 Star 的人数。这个数越高&#xff0c;代表…

springboot3 redis 实现分布式锁

分布式锁介绍 分布式锁是一种在分布式系统中用于控制不同节点上的进程或线程对共享资源进行互斥访问的技术机制。 在分布式环境中&#xff0c;多个服务可能同时访问和操作共享资源&#xff0c;如数据库、文件系统等。为了保持数据的一致性和完整性&#xff0c;需要确保在同一…